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Abstract： Due to the long distance and complex background， it is hard for the infrared detecting and tracking sys⁃
tem to find and locate the dim-small targets in time.  The proposed method， ACE-STDN， aims to tackle this diffi⁃
cult task and improve the detection accuracy.  First of all， an adaptive contrast enhancement subnetwork prepro⁃
cesses the input infrared image， which is conducive for the low-contrast dim targets.  Next， a detection subnet⁃
work with a hybrid backbone takes advantage of both convolution and self-attention mechanisms.  Besides， the re⁃
gression loss is designed based on 2D Gaussian distribution representation instead of Intersection over Union mea⁃
surement.  To verify the effectiveness and efficiency of our method， we conduct extensive experiments on two 
public infrared small target datasets.  The experimental results show that the model trained by our method has a sig⁃
nificant improvement in detection accuracy compared with other traditional and data-based algorithms， with the 
average precision reaching 93. 76%.  In addition， ACE-STDN achieves outstanding detection performance in a 
multiclass object dataset and a general small object dataset， verifying the effectiveness and robustness.
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基于自适应对比度增强的红外小目标检测网络
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摘要：红外探测系统需要尽早发现目标以便及时拦截，但是红外图像上的小目标检测是一个挑战十足的任

务。为了提高检测准确率，提出一种基于自适应对比度增强的红外小目标检测方法。为了利用自注意力机

制和卷积各自的优势，设计了一个高效的特征提取网络和一个面向小目标的检测头。同时为了解决实际应

用中出现的弱目标，在检测子网络前添加了一个图像预处理子网络，该模块可以自适应地调节图像对比度。
在红外空中小目标数据集上的实验表明，提出的方法能达到 93.76%的检测精度，与经典的检测方法相比，能

够更好地平衡检测精度和召回率，证明了方法的巨大应用潜力。
关 键 词：红外图像；小目标检测；深度学习
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Introduction

Single-frame infrared small target detection 
（SIRST） aims at locating small targets from complex 

backgrounds using the infrared radiation difference， which is one of the research hot spots in many applica⁃tions.  Infrared acquisition technology surpasses visible and radar detecting systems in several aspects， i. e. ， the 
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strong shielding property of passive detecting， weather-protected long imaging range， and high sensitivity to boosting missiles plumes.  Therefore， it is widely used in the military field， such as long-range precision strikes， aerospace defense confrontation， battlefield intelligence， and reconnaissance.  Besides， it also makes remarkable achievements in remote sensing， medical imaging， and industrial flaw detection.The bottleneck of the infrared acquisition system and its application lies in the capability to detect small-dim targets.  It is a very challenging problem since an in⁃frared small-dim target only contains less than 9 ×9 pix⁃els （of a 256 ×256 image） and the images have low con⁃trast and low signal-to-noise ratio （SNR）.  Therefore， the performance and efficiency of detecting small objects are far from satisfactory， and the technical roadblocks are as follows.  （1） Targets lack structural features like fine tex⁃ture and shape.  （2） Small objects have similar character⁃istics to unpredictable background clutter.  （3） Infrared imagery is frequently accompanied by smog and waves.  
（4） There are a few public infrared small target datasets.Up to now， the research in the single-frame detec⁃tion domain can be categorized into four groups.  Filter-based algorithms ［1-2］ concentrate on assuming and sup⁃pressing the background， or using the frequency differ⁃ence between target and clutter to approach saliency de⁃tection.  Methods based on human visual system （HVS） 
［3-4］ imitates that human eyes can be attracted by the tar⁃get in an image.  LCM ［3］ refers to the contrast mechanism of HVS and measures the dissimilarity between the cur⁃rent location and its neighborhoods.  Algorithms based on low-rank assumption ［5-6］ exploit the property of non-local self-correlation of the global infrared patch image.  IPI ［5］ assumes that the target patch-image is a sparse matrix and the background patch-image would be a low-rank ma⁃trix.  The small target detection task is then transformed into an optimization problem of recovering the low-rank and sparse matrices.  Although differences exist in imag⁃ing using the standard scopes and the infrared scope， deep learning is driven by data and concentrates on data distribution.  Therefore， when facing the infrared small target detection task， we can draw on the state-of-the-art networks in the visible field.Small object detection has been a hot topic in com⁃puter vision for years.  Multiple methods are proposed to solve this difficult but important task.  The first kind of method goes deep into multi-scale feature learning.  Fea⁃ture pyramid network （FPN） ［7］ assembles the spatial in⁃formation from low levels and semantic information from high levels to strengthen the features of targets.  The re⁃ceptive fields of small objects are smaller than big ob⁃jects， so TridentNet ［8］ focuses on designing three dilated convolutions with different dilation rates to construct multi-size detection branches.  The second type uses gen⁃erative adversarial networks （GAN） to generate high-res⁃olution images ［8］ or high-resolution features ［10-11］.  The generator generates fake high-resolution images or fea⁃ture maps from low-resolution ones， and the discrimina⁃tor takes charge to discriminate between the fake and the 

real.  Context-based methods ［12-14］ dig into the contextual information and the relationship between the small object and its neighbors which are easier to detect.  Another way to promote the performance of small object detection is by adding special designs to generic object detection archi⁃tectures.  S3FD ［15］ develops a scale compensation anchor matching strategy and a max-out background label to im⁃prove the recall rate and reduce the false positive rate.  FaceBoxes ［16］ proposes a new anchor densification strate⁃gy ensuring different types of anchors have the same den⁃sity on the image， which significantly improves the recall rate of small faces.  Meanwhile， some researchers ob⁃serve that Intersection over Union （IoU）， the most wide⁃ly used metric in object detection， is sensitive to slight offsets between predicted bounding boxes and ground truths when detecting tiny objects.  Thus， new metrics are proposed to improve the performance of anchor-based detectors， e. g. ， GIoU ［17］， DIoU ［18］， CIoU ［18］， DotD 
［19］， and NWD ［20］.In recent years， some awesome learning-based methods are proposed for infrared small target detection.  MDvsFA-cGAN ［21］ proposes a conditional GAN compris⁃ing two generators that utilize the different sizes of recep⁃tive fields.  The dense nested attention network （DNA-Net） ［22］ contains a tri-directional dense nested interac⁃tive module （DNIM） to achieve progressive feature inter⁃action and adaptive feature enhancement.  Dai ［23］ designs a plug-in module named asymmetric contextual modula⁃tion （ACM）， which can encode the smaller scale visual details into deeper layers.  In EAAU-Net ［24］， an en⁃hanced asymmetric attention （EAA） module is designed to improve performance using cross-layer feature fusion and spatial-channel information exchange between the same layers.  Liu ［25］ adopts the self-attention mechanism of the transformer to learn the interaction information in a larger range， which is the first work to explore the trans⁃former to detect the infrared small-dim target.This work is motivated by the following thought that we gain from SIRST tasks.  Due to the limited pixels of the targets， producing high-quality detection perfor⁃mance requires an efficient method to extract features and make full use of the information from the infrared im⁃age.  However， such satisfactory performance may not be sufficiently achieved by a single detection network， espe⁃cially when the small target is dim as well.  Inspired by the traditional background suppression-based methods， we find that a better approach may be adding an adjunc⁃tive preprocessing module to reduce noise and improve contrast.Following the above idea， we propose an end-to-end deep learning framework to improve the performance of SIRST.  In this framework， the pipeline can be divided into two phrases， i. e. ， enhancing the contrast and de⁃tecting small targets.  Two deep neural networks are con⁃structed to focus on the two stages respectively.  The con⁃trast enhancement subnetwork works to improve the SNR and the relative local thermal contrast adaptively， then its output passes to the small target detection subnet⁃work.  Existing CNN-based detection networks can ex⁃

tract features by convolution within a small neighbor⁃hood， but the limited receptive field makes it hard to cap⁃ture global dependency.  Another framework， Transform⁃er， becomes more popular and dominates among various vision tasks for the capacity to capture long-range depen⁃dency and learn global contextual information via self-at⁃tention.  However， it induces costly computation at the same time， which means a pure transformer structure is not a wise choice.  In addition， these state-of-the-art net⁃works are designed for generic image datasets.  Directly using them for infrared small target detection can fail cat⁃astrophically due to the large difference in the data distri⁃bution.  Thus， it is of great importance to re-design the structure to handle infrared small target detection tasks.  To make the best use of these two dominant frameworks and alleviate their respective deficiencies， we design a hybrid detection subnetwork that integrates the self-atten⁃tion mechanism into deep layers and applies a novel transformer-styled convolution block.  In this way， the network can extract long-range information and overcome redundancy and dependency simultaneously.The contributions of this paper can be summarized as follows.  Firstly， we propose a novel framework for in⁃frared small object detection， using a two-stage learning paradigm.  Compared with the existing learning-based methods that use a single network for detection， our ap⁃proach operates in favor of the dim targets.  Secondly， an adaptive contrast enhancement subnetwork is pro⁃posed to preprocess the input infrared image by suppress⁃ing the complex background and highlighting the target.  
Thirdly， a hybrid backbone is designed in the small tar⁃get detection subnetwork， which is beneficial to find and locate small targets under difficult circumstances of long distances and complex backgrounds.  Besides， this back⁃bone proves the availability and superiority of the mix of both self-attention and convolution.  Last， we use a loss function that measures the similarity between bounding boxes of tiny objects by the distance of their correspond⁃ing Gaussian distributions instead of IoU-based measure⁃ment series.
1 Method 

In this section， we introduce the proposed infrared dim-small target detection pipeline at length.  Ordered by the workflow， the contrast enhancement subnetwork ad⁃justs the thermal contrast adaptively to suppress the com⁃

plex background and highlight the target.  Then the hy⁃brid backbone extracts features combining the advantag⁃es of both convolution and self-attention mechanisms.  At last， the small-target-oriented detector predicts infrared dim-small targets with two detection heads based on fea⁃ture maps from different layers.  Besides， we apply a nov⁃el regression loss to elevate accuracy and speed up con⁃vergence.  Figure 1 illustrates the framework of ACE-STDN.
1. 1　Contrast Enhancement Preprocessing　The image captured by the infrared imaging system usually has a low signal-to-noise ratio， and lacks in the relative local thermal contrast， causing some small tar⁃gets with indistinctive characteristic.  These infrared dim-small targets bring difficulties in object detection.  To tackle this challenge， we design an adaptive contrast en⁃hancement subnetwork （ACESN） to preprocess the input infrared image before detection.  Given an infrared image 
I ∈  RW × H， the preprocessing procedure can be modeled as：

Î =  F ( I, θ ), (1)
where Î ∈  RW × H represents the enhanced infrared image.  
F is the enhancement network with trainable parameter 
θ， which is illustrated in Fig.  2.The ACESN can be divided into three modules.  First of all， the multi-level feature extraction module 
（MLFEM） is a simple 4-layer CNN， while in each convo⁃lution layer， the kernel is 3 × 3 in size and 1 in stride.  Besides， it applies ReLU as the activation function.  The input of MLFEM is the low-contrast infrared image， and each feature map is the input to its corresponding feature enhancement sub-module as well as the input of the next layer.  Secondly， the branch-independent enhancement module （BIEM） is composed of 4 feature enhancement sub-modules.  The output of each branch is an enhanced image Ii ∈  RW × H.  Each sub-module has an identical sym⁃metric architecture， operating downsampling and upsam⁃pling.  Except for the kernel size， these layers have the same settings in MLFEM， stride 1， and ReLU nonlineari⁃ty.  The last one is the fusion module （FM）， which con⁃catenates the 4 output images from BIEM to produce the 
final enhanced image Î using a 1 × 1 convolution kernel.  This merging equals a weighted sum with learnable weights.

Fig.  1　The training pipeline of the proposed ACE-STDN framework.  Our method consists of two subnetworks to preprocess the infra‐
red image and detect small targets respectively.  The contrast enhancement subnetwork aids the small target detection subnetwork to 
achieve better performance， especially for dim targets.
图 1　本文提出的ACE-STDN的网络框架与训练流程
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1. 2　Hybrid Feature Extraction Network　
The feature extraction network， known as the back⁃

bone， is the bedrock of detection tasks.  It conducts con⁃
volution on input images and provides concise semantic 
information for the subsequent detectors.  However， in 
most classic networks， the convolution block has a rela⁃
tively small receptive field， which leads to poor perfor⁃
mance and needs a proper solution.  Impressed by the ef⁃
fectiveness of vision transformer， we propose a novel hy⁃
brid backbone （HB） with transformer-styled convolution 
（TSConv） blocks and a transformer encoder block.

Instead of simply connecting transformer encoders 
with convolution blocks， we design the TSConv block to 
uniform them.  Following the instruction in Con⁃
vNeXt ［26］， we modify the structure of the classic ResNet 
block at first.  In the transformer encoder block， the hid⁃
den dimension of the MLP block is wider than the input 

dimension， which forms an inverted bottleneck.  There⁃
fore， we alter the ResNet from a bottleneck structure to 
an inverted bottleneck structure by rearranging the convo⁃
lutions.  Moreover， we use the depthwise convolution to 
imitate the weighted sum operation in the self-attention 
mechanism， which only mixes the information in the spa⁃
tial dimension.  The proposed TSConv block contains a 
3 × 3 depthwise convolution followed by two 1 × 1 convo⁃
lutions， and each operation merely mixes the information 
across one dimension， spatial-wise or channel-wise.  In 
Fig.  3. ， （a） and （b） illustrate the differences between 
TSConv Block and ConvNeXt Block， which make the 
module more suitable in infrared dim-small target detec⁃
tion， e. g. ， the 7×7 convolution is too large to maintain 
and transmit the information of a tiny target.  Additional⁃
ly， the proposed TSC3 module （in Fig.  3 （c）） imitates 
the structure of the C3 module in YOLOv5， which con⁃

Fig.  2　The adaptive contrast enhancement subnetwork for infrared images.  This network consists of three main modules， where gray 
arrows denote convolution layers， and the green ones are deconvolution layers
图2　红外图像自适应对比度增强网络

Fig.  3　The structure of the transformer encoder block and TSConv block.
图 3　特征提取网络中组件的结构

catenates three stacking TSConv blocks with a standard convolution.We apply a transformer encoder block to capture long-range dependency and learn global contextual infor⁃mation.  As shown in Fig.  3 （d）， each transformer en⁃coder block contains two sub-units， including the multi⁃headed self-attention （MSA）， and two fully-connected layers with a GELU non-linearity （MLP）.  LayerNorm 
（LN） is applied before each sub-unit， and residual con⁃nections are used after each sub-unit.  Transformer en⁃coder block increases the ability to capture global depen⁃dency.  It also explores the feature representation poten⁃tial via the self-attention mechanism.Because the self-attention mechanism is inefficient to encode local features in the shallow layers.  It simply captures detailed visual features， resembling the feature extraction result of convolution.  Moreover， the self-atten⁃tion applied on high-resolution shallow feature maps brings a large and unnecessary computation burden.  In contrast， the convolution operation focuses on local de⁃pendency within a small neighborhood.  It can obtain sim⁃ilar features in the shallow layers while reducing local re⁃dundancy and avoiding unnecessary computation.  There⁃fore， as shown in Fig.  4. ， the proposed TSC3 modules are used in the inception phase of the feature extraction network， and the transformer encoder block is located at the end.
1. 3　Small Target-Oriented Detector　In the definition by SPIE， an infrared dim-small tar⁃get only occupies less than 9 × 9 pixels of a 256 × 256 image.  After multiple feature extraction layers， the fea⁃ture map fed into the prediction head lacks enough infor⁃mation of small objects.  Therefore， we need to redesign the prediction head using low-level， high-resolution fea⁃ture maps.First of all， we use a weighted bi-directional feature pyramid network （BiFPN） ［27］ as a substitute for FPN and PAN in YOLOv5 to make the best use of the feature maps extracted by the HB at different stages.  As shown in Fig.  4， BiFPN deletes those nodes with only one input edge， because these kind of nodes have less contribution to fea⁃tures fusion.  Besides， BiFPN adds an extra edge from the original input to the output node if they are at the same level， which aims to fuse more features without add⁃ing much cost.Secondly， in order to improve the detection perfor⁃

mance for infrared dim-small targets， we apply the coor⁃dinate attention mechanism to adaptively enhance multi-level features， which embeds smaller-scale details into high-level coarse feature maps.  The coordinate attention embeds positional information into channel attention， ag⁃gregating features along the two spatial directions.  One spatial direction captures long-range dependencies and the other preserves precise position information.  In this way， the resulting feature maps can be applied to the in⁃put feature map to augment the representations of the in⁃frared dim-small targets.At the end of the detection pipeline， we remove the detection head for large-scale and medium-scale objects in YOLOv5.  At the same time， we conduct one more upsampling and add a new prediction head for tiny infra⁃red targets， illustrated in Fig.  5.  Compared with YO⁃LOv5， our framework adds a detection head for tiny ob⁃jects， and removes two heads for medium and large size objects.  The blue arrows and orange ones stand for con⁃volution and de-convolution respectively.  It is worth not⁃ing that we omit some connections and concatenation in this figure to explain and highlight our main modifica⁃tion.  The new prediction head is generated from a low-level， high-resolution feature map， which is more sensi⁃tive to dim-small targets in an infrared image.
1. 4　2D Gaussian Distribution Regression Loss　Interfered with atmospheric scattering， atmospheric refraction， optics compensation， etc. ， the signals of small objects received by the infrared imaging system are extremely weak.  As illustrated in Fig.  6， the 3D intensi⁃ty distribution of a dim-small infrared target shows that the shape is centrosymmetric and the intensity decreases in concentric circles， which is similar to the 2D Gaussian distribution function.  Kim ［28］ models the dim-small infra⁃red targets as 2D Gaussian distributions：
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where σx and σy are the scale parameters of horizontal and vertical respectively.  λ is the gray value of the ob⁃ject.  And fT ( r ) denotes the gray-level spatial cumulative 
distribution function of this dim-small target.Inspired by the formula above， we investigate the in⁃frared dim-small target dataset and find that these small instances do not correspond to the rectangle shape per⁃fectly.  A bounding box contains both target and back⁃

Fig.  4　The architecture of the detection subnetwork
图 4　目标检测子网络的网络架构
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catenates three stacking TSConv blocks with a standard convolution.We apply a transformer encoder block to capture long-range dependency and learn global contextual infor⁃mation.  As shown in Fig.  3 （d）， each transformer en⁃coder block contains two sub-units， including the multi⁃headed self-attention （MSA）， and two fully-connected layers with a GELU non-linearity （MLP）.  LayerNorm 
（LN） is applied before each sub-unit， and residual con⁃nections are used after each sub-unit.  Transformer en⁃coder block increases the ability to capture global depen⁃dency.  It also explores the feature representation poten⁃tial via the self-attention mechanism.Because the self-attention mechanism is inefficient to encode local features in the shallow layers.  It simply captures detailed visual features， resembling the feature extraction result of convolution.  Moreover， the self-atten⁃tion applied on high-resolution shallow feature maps brings a large and unnecessary computation burden.  In contrast， the convolution operation focuses on local de⁃pendency within a small neighborhood.  It can obtain sim⁃ilar features in the shallow layers while reducing local re⁃dundancy and avoiding unnecessary computation.  There⁃fore， as shown in Fig.  4. ， the proposed TSC3 modules are used in the inception phase of the feature extraction network， and the transformer encoder block is located at the end.
1. 3　Small Target-Oriented Detector　In the definition by SPIE， an infrared dim-small tar⁃get only occupies less than 9 × 9 pixels of a 256 × 256 image.  After multiple feature extraction layers， the fea⁃ture map fed into the prediction head lacks enough infor⁃mation of small objects.  Therefore， we need to redesign the prediction head using low-level， high-resolution fea⁃ture maps.First of all， we use a weighted bi-directional feature pyramid network （BiFPN） ［27］ as a substitute for FPN and PAN in YOLOv5 to make the best use of the feature maps extracted by the HB at different stages.  As shown in Fig.  4， BiFPN deletes those nodes with only one input edge， because these kind of nodes have less contribution to fea⁃tures fusion.  Besides， BiFPN adds an extra edge from the original input to the output node if they are at the same level， which aims to fuse more features without add⁃ing much cost.Secondly， in order to improve the detection perfor⁃

mance for infrared dim-small targets， we apply the coor⁃dinate attention mechanism to adaptively enhance multi-level features， which embeds smaller-scale details into high-level coarse feature maps.  The coordinate attention embeds positional information into channel attention， ag⁃gregating features along the two spatial directions.  One spatial direction captures long-range dependencies and the other preserves precise position information.  In this way， the resulting feature maps can be applied to the in⁃put feature map to augment the representations of the in⁃frared dim-small targets.At the end of the detection pipeline， we remove the detection head for large-scale and medium-scale objects in YOLOv5.  At the same time， we conduct one more upsampling and add a new prediction head for tiny infra⁃red targets， illustrated in Fig.  5.  Compared with YO⁃LOv5， our framework adds a detection head for tiny ob⁃jects， and removes two heads for medium and large size objects.  The blue arrows and orange ones stand for con⁃volution and de-convolution respectively.  It is worth not⁃ing that we omit some connections and concatenation in this figure to explain and highlight our main modifica⁃tion.  The new prediction head is generated from a low-level， high-resolution feature map， which is more sensi⁃tive to dim-small targets in an infrared image.
1. 4　2D Gaussian Distribution Regression Loss　Interfered with atmospheric scattering， atmospheric refraction， optics compensation， etc. ， the signals of small objects received by the infrared imaging system are extremely weak.  As illustrated in Fig.  6， the 3D intensi⁃ty distribution of a dim-small infrared target shows that the shape is centrosymmetric and the intensity decreases in concentric circles， which is similar to the 2D Gaussian distribution function.  Kim ［28］ models the dim-small infra⁃red targets as 2D Gaussian distributions：
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where σx and σy are the scale parameters of horizontal and vertical respectively.  λ is the gray value of the ob⁃ject.  And fT ( r ) denotes the gray-level spatial cumulative 
distribution function of this dim-small target.Inspired by the formula above， we investigate the in⁃frared dim-small target dataset and find that these small instances do not correspond to the rectangle shape per⁃fectly.  A bounding box contains both target and back⁃

Fig.  4　The architecture of the detection subnetwork
图 4　目标检测子网络的网络架构
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ground information， while the background information is distributed near the boundaries.  Therefore， we can use a 2D Gaussian distribution to describe the bounding box， modeling the importance of pixels inside the bounding box by weights.  Use a random bounding box R =(cx， cy，w，h ) as an example， where (cx， cy )， w and h de⁃
note the center coordinates， width， and height respec⁃tively.  Its inscribed ellipse can be represented as：
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where ( μx，μy ) is the center coordinates of the ellipse， σx 
and σy are the lengths of semi-axes along x and y axes.  

Accordingly， μx = cx， μy = cy， σx = w
2， σy = h

2.  This 
ellipse will be a density contour of the 2D Gaussian distri⁃bution.  Therefore， the mentioned bounding box R can be modeled as：
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Therefore， we can measure the similarity between two bounding boxes by the distribution distances of their cor⁃responding Gaussian distributions， replacing the com⁃mon measurement， IoU.  Both measurements are illustrat⁃ed in Fig.  7.

Following the Ref.  ［20］， we use the Wasserstein distance as our regression loss function， which comes from optimal transport theory.  In the first place， we rep⁃resent the predicted bounding box and the ground truth in 
the form of 2D Gaussian distribution， Np( μp，Σp ) and 
Ngt( μgt，Σgt ).  Then we can put forward the 2nd order Was⁃
serstein distance between Np and Ngt：
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Next， the distance is changed into its exponential form in which the value is constrained within [ 0，1]：
NWD (Np,Ngt ) = exp (- W 22 ( )Np,Ngt

13 ) , (6)
Therefore， the regression loss function can be rede⁃signed as：

LNWD = 1 - NWD (Np,Ngt ), (7)
The main advantage of Normalized Wasserstein Distance 
（NWD） is that it can provide a gradient for optimizing the network in two special cases.  One is when there is no overlap between the predicted bounding box and the ground truth.  The other is the predicted box contains the ground truth box completely or vice versa.  Therefore， NWD-loss is suitable for our infrared dim-small target de⁃tector.

（a）　

（b）　

Fig. 5　Two different frameworks：（a） the framework of YOLOv5； 
（b） our improved framework
图 5　两种不同的检测框架：（a） YOLOv5的检测框架；（b） 本文改
进的检测框架

（a）　

（b）　

Fig. 6　 Infrared small-dim targets in the real world and their lo‐
cal intensity distribution：（a） simple background； （b） complex back⁃ground
图 6　真实红外弱小目标的领域强度分布：（a） 简单背景； （b） 复
杂背景

Fig.  7　The schematic diagram of measurements using a discrete 
bounding box and 2D Gaussian Distribution
图 7　使用分布距离衡量包围框相似性

2 Experiments 
In this section， we evaluate the effectiveness of our method in the scenarios under complex backgrounds.  First of all， we describe the experimental setting， which includes the datasets， evaluation metrics， network imple⁃mentation details and comparison methods.  Next， we conduct ablation studies to examine the effectiveness and practicability of each module in our proposed framework.  Then， the visual and numerical comparison between ACE-STDN and state-of-the-art methods further demon⁃strates that ACE-STDN can accurately detect infrared small targets.  Finally， we show detection results on visi⁃ble images to verify the generalization ability of our ACE-STDN.

2. 1　Experimental Setting　
Dataset.  We use the public dataset ［29］ for small in⁃frared moving target detection under clutter background to build our training set， validation set， and test set.  This dataset contains a group of data for one or multiple fixed-wing UAV targets via outfield recording and data post-processing.  The data acquisition scenario covers sky background and complex field background.  This da⁃taset includes 22 image sequences， 30 trajectories， 16177 frames and 16944 targets.  The size of images is 416 × 416.  In addition， we conduct experiments on the dataset published in Ref.  ［23］， in which the training set has 8525 images and the test set has 545 images.  For the sake of convenience， all the label formats are converted into YOLOv5-form， and we denote above two datasets as 

ATDT and SIRST respectively.
Evaluation Metrics.  The evaluation metrics used in this paper are Precision， Recall， F1-score， and Aver⁃age Precision （AP）.  Precision represents the credibility of detection results， while Recall reflects whether the de⁃tection algorithm locates all the infrared small targets.  F1-score is used to measure the relationship between them.

F1 - score = 2 × Precision × Recall
Precision + Recall

 , (8)
Precision =  TP

TP + FP
 , (9)

Recall =  TP
TP + FN

 , (10)
TP means that a positive target is predicted as real.  FP means that a negative target is predicted as real.  TF means that a positive target is predicted as fake.
Implement Details.  We adopt the training protocol of YOLOv5 in our proposed ACE-STDN algorithm.  Dur⁃ing training， the data augmentation methods like image flipping， mosaic， and random perspective are applied to expand the training dataset.  Our ACE-STDN approach is trained by the Adam optimizer with 200 epochs.  The start learning rate is 10-3 and the batch size is 8.  ACE-STDN predicts the bounding boxes at two scales （tiny and small）， and three anchors at each scale.  We imple⁃ment ACE-STDN on Pytorch 1. 11. 0 and run it on the NVIDIA TITAN V for training and testing.
Comparison Methods.  This paper chooses seven 

detection methods based on deep learning to compare with ACE-STDN in two aspects.  The first group aims to prove the availability and superiority of the combination of self-attention mechanism and convolution operation.  We compare our method with a pure CNN-based network 
– YOLOv5， a pure transformer framework – ViT ［30］， and a method combined both convolution and self-atten⁃tion mechanisms – TPH-YOLOV5 ［31］.  In the second group， we select a background suppression-based meth⁃od TopHat ［1］， an HSV-based method LCM ［3］， two opti⁃mization-based method IPI ［5］ and NRAM ［6］.
2. 2　Ablation Study　To examine the effectiveness of each module in our proposed framework， we conduct ablation experiments on different settings， including hybrid backbone， adap⁃tive contrast enhancement module， and 2D Gaussian Dis⁃tribution Regression Loss.  As shown in Table 1， we con⁃duct quantitative mAP evaluation on module selection.  By combining the three modules， Model D （ACE-STDN） obtains the best result， demonstrating the effectiveness of the proposed improvements.  Compared with Model A which uses CSPDarknet53 as backbone， Model B which uses CIoU in regression loss， and Model C which is a straight detection framework， the detection results of Model D （ACE-STDN） are the best.  Model A and D demonstrate the superiority of the proposed hybrid back⁃bone with TSConv blocks.  This feature extraction struc⁃ture can capture global dependency and have strong fea⁃ture representation potential using the inverted bottle⁃neck.  Although the AP only increases 0. 74% using NWD-based loss， its main contribution is to decrease the missing alarm rate and increase the positional precision of infrared small targets.  From Model C to Model D， ACESN promotes the detection rate of dim targets by ad⁃justing the contrast， which make ACE-STDN suitable and robust for more circumstances.

2. 3　Comparison　In this section， we compare ACE-STDN with state-of-the-art methods through visual and numerical evalua⁃tion to further verify the effectiveness of our method.
The effectiveness of hybrid usage of self-atten⁃

tion and convolution.  As shown in Fig.  8， we selected seven typical infrared small target scenes and compared the detection results with three other methods.  In case
（c） and case（f）， ACE-STDN can detect small-dim infra⁃red targets precisely compared to YOLOv5.  A low false alarm is of great importance in the real application.  ViT has a poor performance in this detection task， especially in case（a）， in which the target has a relatively big size 

Table 1　Ablation study on ATDT
表1　消融实验结果
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Model
A
B
C
D

HB

√
√
√

ACESN
√
√

√

NWD
√

√
√

AP
88. 25%
93. 02%
92. 48%
93. 76%
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and notable intensity among the dataset.  In the hard case 
（e） and （f）， where the target is both small and dim， ACE-STDN shows outstanding detecting ability and sta⁃bility.According to Table 2， it is clear that the mean preci⁃sion of our method achieves 93. 76%， which surpasses all other detection models.  For example， it outperforms the original YOLOv5s by 6. 49%.  Although TPH-YO⁃LOv5 shows the feasibility of unifying convolution and self-attention compared with ViT， it sacrifices its compu⁃tational efficiency greatly.  As small targets dominate the infrared dataset， ACE-STDN with its customized mod⁃ules has significant advantages.  The major one is the ap⁃propriate placement of convolution and self-attention blocks.  In shallow layers， TSConv can effectively solve the problem that information is lost during the downsam⁃pling.  The transformer encoder block is integrated into the last layer of the HB to extract long-range information and overcome redundancy and dependency.

Comparison with specialized methods for infra⁃
red small target detection.  As shown in Fig.  9， four methods are selected to compare the detection results in 

different scenes.  From the figures， we can observe that filter-based TopHat is the most sensitive one to cluster.  And if the target is an area target， both TopHat and LCM fail to work.  The detection result of NRAM is not satisfac⁃tory and the predicted results are relatively small com⁃pared to the ground truth， which is because of the vari⁃ous constraints guided by prior knowledge.  Although our proposed method is not a segmentation algorithm， it can accurately detect and locate targets of different sizes.In order to illustrate the effectiveness of ACE-STDN straightforwardly， we use numerical methods for quantita⁃tive evaluation.  From Table 3， we can see that our meth⁃od makes a balance between accurate detection and re⁃duction of false alarm.  On the contrary， classic methods exhibit high Precision and low Recall， because these methods suppress the background and targets at the same time.  For those dim targets， the ACE module in our method prevents them from being flooded with back⁃ground clusters.
2. 4　Supplementary Result on Multiclass Object de⁃
tection　In addition to evaluating ACE-STDN on infrared da⁃tasets containing targets of just one type， the model is al⁃so trained on the multiclass dataset to verify its outstand⁃ing detection ability.  The results are shown in Fig.  10-11.  In addition， ACE-STDN can detect and classify ob⁃jects of different sizes， modalities， and densities， which shows its robustness and generalization ability.  In Fig.  10， ACE-STDN successfully distinguishes three flying objects under different complex background.  Fig.  11 shows the generality in visible dataset.  In the challeng⁃ing situation with size-diverse planes or helicopters， ACE-STDN outputs correct detection and classification predictions.  This is useful in practical application when 

Fig.  8　Illustration of detection results on ATDT
图 8　在ATDT数据集上的检测结果

Table 2　Comparison with generic detection method on 
ATDT

表2　不同机制的检测方法在ATDT数据集上的表现
Model

YOLOv5
ViT

TPH-YOLOv5
ACE-STDN

Average Precision
87. 27%
59. 63%
74. 95%
93. 76%

Inference Time
5. 3 ms
5. 5 ms
8. 7 ms
4. 8 ms

close targets appear in the camera’s sight.
3 Conclusion 

We proposed a new infrared target detection model 

ACE-STDN with contrast enhancement adaptively.  With the benefit of preprocessing subnetwork， it can work well in detecting dim small targets in infrared images.  In addi⁃tion， the hybrid backbone is designed to improve feature representation， which proves that proper mix-usage of self-attention and convolution is superior to the pure mechanisms.  And the 2D Gaussian distribution-based re⁃gression loss is suitable for infrared small target detection concerning the relative position between two bounding boxes.  Evaluations on both single-class and multiclass datasets， both infrared and visible datasets demonstrate the outstanding performance of ACE-STDN as it achieves a better balance between precision and recall.  In summa⁃ry， ACE-STDN provides a new choice for small-dim tar⁃get detection in IP systems.  In the future， we plan to speed up the network for real-time detection tasks.

Fig.  9　Illustration of detection results on SIRST
图 9　在SIRST数据集上的检测结果

Table 3　Comparison with generic detection method on 
SIRST

表 3　不同的红外小目标检测方法在SIRST数据集上的表现
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Table 3　Comparison with generic detection method on 
SIRST

表 3　不同的红外小目标检测方法在SIRST数据集上的表现
Method
TopHat

LCM
NRAM

IPI
ACE-STDN

Precision
0. 6873
0. 6201
0. 7549
0. 7640
0.  8537

Recall
0. 0818
0. 1443
0. 1544
0. 1813
0. 8362

F1-score
0. 1461
0. 2341
0. 2563
0. 2931
0. 8448
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Fig.  10　 Illustration of detection results on a multiclass infra‐
red dataset
图 10　在多类别红外数据集上的检测结果

Fig.  11　Illustration of detection results on a multiclass RGB da‐
taset
图 11　在多类别可见光数据集上的检测结果
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